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Smatrix) due to a finite potential. We use a discretization of the time-dependent wave 
equation together with a judicious implementation of a method of Prony. ‘kc 1988 Academic 
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1. INTRODUCTION 

The purpose of this paper is to report on the computation of the scattering fre- 
quencies due to waves scattered by a potential. Many acoustic and electromagnetic 
problems can be modeled by such waves, or by waves scattered by a conducting 
body. Examples include the medical applications of ultrasonics, and the detection of 
targets by radar. An impenetrable body can be regarded as a region where the 
potential is infinite. Scattering frequencies are also known as complex resonances or 
poles of the scattering matrix. Under appropriate conditions on the potential, they 
form a discrete set (c,} in the complex plane with Im crj --f +a. 

* This research was supported by ONR Grant NOOO14-85-K-0620 and by NSF Grant DMS 84-20957 
at Brown University. 
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Consider a potential q(x) where x E [w3. Look for solutions of the problem 

-AP + dX)P(X) = 02P(-d 

p(x) - exp( - ior)/r 
(1) 

as r = 1x1 3 co. 

If this problem has a nontrivial solution, we say that o is a scattering frequency. 
We know of two methods in the literature for finding these resonances. One is a 

method of the Rayleigh-Ritz type, well known in quantum chemistry [14]. 
Another, closely related, method consists of discretizing the elliptic equation (1) 
with an appropriate boundary condition on a large sphere and then computing the 
eigenvalues of the resulting matrix [13], but we are not aware of any numerical 
results using this method. Instead, we proceed as follows. 

First we solve the time-dependent wave equation 

zf,, - Au + q(x) u(x, t) = 0 for (x, t)ER3xR (2) 

for any convenient (but appropriately nontrivial) initial data of compact support at 
t = 0. It is known [S] that the asymptotic expansion 

24(X, t) - f cie”~‘pj(x) 
j=l 

(3) 

is valid for fixed x as t + +a (except in the case of multiple crj when powers of t 

may also occur). Here oj is the jth scattering frequency and pi(x) is the 
corresponding eigenfunction as in (1) above, both of which depend only on the 
potential. Only the coefficients cj depend on the initial data. 

The second step of our method is to fix x and calculate the exponents in (3) from 
the discrete numerical solutions evaluated at equally spaced sample times. Thus 
with any fixed choice of x and with t = t, + kAT, we denote u(x, t, + kAT) = fk and 
zj = exp(ioj AT). Then the asymptotic expansion takes the form (with different c,) 

Therefore the second step is to calculate the zj and cj from the fk. Of course, only a 
finite number of terms, say n of them, can be calculated. We have already studied 
this delicate numerical problem in [12, 71. Our solution is basically an implemen- 
tation of a classical idea of Prony [9], which reduces the problem to solving two 
systems of n linear equations and to finding the zeros of a polynomial of degree n. 
As a check on the accuracy of our results, we repeat the procedure using different 
sets of sampling locations and different initial data. 

Our method is quite flexible. It can be applied to other scattering problems such 
as (i) the wave equation in the exterior of an obstable with well-posed boundary 
conditions, (ii) potentials or obstacles which depend periodically on time, or (iii) 
electromagnetic waves in the presence of a conductor or dielectric. In Section 5 we 
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report on problem (ii). In the future we shall report on problems (i) and (iii). The 
second step, solving (4), is similar to the statistical parameter estimation problem 
known as the method of moments. The main limitation of our method derives from 
the ill-conditioned nature of that step. That in turn requires a very accurate 
solution of the differential equation, which is the first step. Solving a two- or three- 
dimensional wave equation to such accuracy requires a computer with a !arge 
memory. Thercforc the present paper is limited to the case of spherically symmetric 
potentials. In our computations we used an IBM 3081 computer with double 
precision, so that the roundoff error was about 10 ~ i2. 

We thank D. Gottlieb and P. Lax for their interest in this problem and for their 
helpful remarks, and Dunmu Ji for his help with the diagrams. 

2. COMPUTATIONAL METHOD 

2.1. Finite ~ifferenre Scheme 

Assuming radial symmetry in both the potential and the solutions, our equalion 
(2) can be written as 

11,, - u?-r -(2/r)u,+q(rju=o, r>O 

u,(O, t) = 0. 

Thle transformation u = ru eliminates the apparent singularity at r = Or 

u,,--c,,+q(Y)u=O, V>Q 

u(0, t) = 0. 

To this we append initial conditions u(r, 0) = h,(r), ~,(r, 0) = /z2(r). We assume that 
q(r), h,(r), and hz(r) have their supports in O< r <R, so that u(r, t) vanishes for 
r 2 R + t. Since we solve only up to a finite time t < r, we need not be concerned 
about boundary conditions at infinity. Let rj = j Ar and f,, = n At, where Ar and dr 
are the spatial and temporal grid sizes. The finite difference scheme is 

cc;+ ’ -2L;“+u;~‘]-s[Ly+1 - 2~; + vi”- !] + ( At)2q(rj) pi;? = 0, (61 

where I’= (At,/Ar)‘. The initial data are 

~1; = h,(rj), 

c-: =(1 -s-+(At)‘q(r,)) u,“+ (s/‘~)[L$‘+, +L$~,] + (At) h,(r,j. 

By Lax’s equivalence theorem, a difference scheme is convergent if and only if it is 
consistent and stable. This scheme is convergent if 0 < s < I, We choose s = 1: in 
which case it is of second order (see [lo]). 
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2.2. Prony’s Algorithm 

With a choice of spatial point x, a sample rate AT (usually larger than the finite- 
difference mesh size At), and an integer n (the “presumed” number of poles), the 
second part of our procedure is to solve a system 

fk = i cjzi”. 
j=l 

Prony’s algorithm is as follows: 

(A) Solve the system 

f akfkfmz=O (m=O, . . . . M- 1) 
k=O 

for CI~, c(i, . . . . a,- i, c1,, where LX, = 1. 
(9) Solve for the zeros of the polynomial 

p(z)= i akzk. 
k=O 

These provide the scattering frequencies by use of the equation zj = exp(ioj AT). 
(C) If the coefficients cj are also desired, solve the system 

(7) 

(8) 

f cj$=fk (k=o, 1,2 ,... ). (10) 
j=l 

We usually take M to be considerably larger than n and (8) is then an overdeter- 
mined linear system. The number of data values fk used is A4 + n. 

When we adapt the algorithm to the discrete solution of the wave equation, how 
shall we choose the starting time to. ? That is, how shall we choosef, = u(ro, to)? We 
choose it just beyond the reach of the characteristics which emanate from the sup- 
port of the initial data. That is, we pick to 3 R + ro. This is reasonable from the 
point of view of the theory and its efficacy is corroborated by numerical examples. 

We also need to choose the step size At of the finite difference scheme so that the 
total number of time steps is not too large. It is therefore convenient to choose the 
support R fairly small. This can always be accomplished by a change of scale 
(x + ax, t -+ at) in the independent variables x and t. As for the sample rate AT, we 
know it must be taken neither too large nor too small or else the linear system (8) 
will be too ill-conditioned. 

2.3. Implementation of Prony’s Algorithm 
In step (A) above we must solve system (8). We write it in the form 

A,Bn = -a,+ l, (11) 
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where the vectors a@ are u/, = [f,- r, . . . . fil+,bfi2]f for l<pd~+-1, the matrix is 
A,, = [a,, . . . . an], and the vector /3, is /3, = [a,, . . . . LX,,_ r]‘. This system is solved 
using the generalized inverse as follows. The singular value decomposition of A is 
;4 = UDV’, where U and V are orthogonal matrices and D is a diagonal matrix with 
diagonal entries sl, ...9 So,, 0, . . . . 0 with si > 0. Next we let 

A+ = V.0; . U’, (1%) 

where 0: is the diagonal matrix with entries s:, . ..) s,:, 0, . . . . 0 and s+ equals I,‘$, for 
sj 3 6 and equals 0 for si < 6, for an appropriately chosen 6. Then the approximate 
solution of system (11) which we use is /3, = -A + . a, + I _ For the detaiis of 
implementing this solution we refer to [12 or 71. 

In step (B) above we must find the complex roots of a polynomial p(z). W’e use 
Muller’s method. Namely, let zr, . . . . -7+, be known roots and let 

If .x0, x,, and .x1 are given, we successively compute ,I:~, .uj, . . . as foliow~s. We let 
K(X) be the second-order Lagrange interpolant of p,,(x) through the points 
(s,, /J,Js~)), (+Yi- iv p,x(Xi- I)), and (-xi-l, p,,(~~~)). Then we set xi+, equal to the 
root of n(x) with the larger denominator in magnitude. We set z,~ equal to ;ci for a 
sufficiently large t. We have modified Muller’s procedure to improve its accuracy 
and save computation time. We set em = /z,,(i) - z,,,(i- 111, where z,,,(i) denotes the 
approximation to z,, in the last iteration. We reorder the roots :r, . ..) z,, so that 
-01 < e, < . . CC,,. We repeat the iteration a number of times with starting points 
s()=I,n, .]I, = 1 +zm, .x2= -1 +Zm, in each procedure of finding the 171th root. For 
details we refer to Cl2 or 71. 

Our basic test of reliability is to look for repetitions of the scattering frequencies 
as the parameters are changed. We change: (i) the presumed number n of poles, 
{ii) the sample locations, and (iii) the initial data h,(v} and h?(r). By the sample 
locations, we mean the fixed spatial point X, the sample rate AT and the starting 
time 1,. In general, we have found that fewer than n roots are accurately repeated; 
in fact, they begin to repeat only when the smallest singular value of A,, has the 
same order as the numerical error in solving the wave equation. A calculation IS 
considered accurate insofar as its repeats under a variety of choices of (i), (ii), and 
(iii). 

We have tested our method in two cases where the exact values of the scattering 
frequencies are known. For our first exampie we let q(x) = 6 for I’ < 0.3 and q(x) = 0 
otherwise. In this case an exact equation for the scattering frequencies G is 
tanh(O.3g) = -/3/A, where /? = ia and /I= (I.‘+ 6)“’ (see Eq. (15) in Section 4). 
From this equation we get the exact values of A = io. Table I compares the exact 
values of the first six scattering frequencies with the values computed using finite 
differences and the Prony method. In the computation we chose step sizes 
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TABLE I 

Exact L Computed 1 

- 7.0996 f 8.273 1 i -7.100+8.273 i 
-9.5214* 19.549 i -9.522 + 19.55 i 
- 10.866 f 30.355 i - 10.87 + 30.36 i 
- 11.815 i-11.019 i -11.82k41.03 i 
- 12.551 k 51.619 i - 12.57 + 51.67 i 
- 13.153 f 62.183 i - 13.20 k 62.23 i 

At = Ar = 0.005, sample rate AT= 0.02, and presumed number of roots /z = 25 and 
30 and 35. We also used ten different sets of data values (at r =O.OSj where 
j = 1, . . . . 10) and two different sets of initial data (&’ and B) of supports 
O<r< R=0.3. To be specific, the data we used were 

Data d: u(r, 0) = 104r(r - R)‘, u,(r,O)=r(R-r) for r< R. 

Data B: ~(r, 0) = lOO(R - r) sin(27tr/R), u,(r, 0) = sin(2nr/R) for r<RR. 

All of these choices gave agreement up to about 0( 10e3) in the first six scattering 
frequencies and provided the computed values in Table I. 

For another example, we let q(x) = 10 for 0.2~ r ~0.3 and q(x) =0 otherwise. 
Then an exact equation for A= ia is 

[fi + ;1 tanh(/?/10)]/[1+ /? tanh(fi/lO)] = -[P/l] tanh(A/5), (13) 

where p = (2’ + 10)‘;” (see Eq. (16) in Section 4). The results of the computation, 
which used the same parameters as in the first example, are again in excellent 
agreement with the exact values, as shown in Table II. 

TABLE II 

Exact 1 Computed ,I 

- 5.9547 * 7.9007 i - 5.955 * 7.901 i 
-8.4566 &- 19.848 i -8.457 f 19.85 i 
- 10.234 + 30.433 i - 10.23 f 30.43 i 
- 10.878 f 40.884 i - 10.87 f 40.88 i 
- 11.600 + 51.776 i -11.58 551.78 i 
- 12.442 f 62.220 i - 12.40 f 62.23 i 
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3. COMPUTATIONAL RESULTS 

In this section we exhibit the first few scattering frequencies for a variety of radial 
potentials. In the computations we generally took initial data d, step sizes 
dr= dr= 0.0025, sample rate AT= 0.02, and M= 80 -n so that 80 data points 
were used in Prony’s algorithm. The computations were repeated for II = 20, 30, and 
35 and at the spatial locations r = 0.025j (j= 1, . . . . 5), a total of 15 repetitions of the 
algorithm. In Figs. l-6 the results are presented graphically for the reader’s 
convenience. Each graph represents the first quadrant, or the first and fourth 
quadrants. of the complex plane, which is sufficient since the scattering frequencies 
occur in pairs symmetric across the imaginary axis. In Figs. 1, 3, 5, and 6 each scat- 
tering frequency is indicated by a circle and, for a given potential, is connected to 
its neighboring scattering frequencies by line segments, for visual convenience. The 
potentials are graphed in the upper left-hand corner. In Fig. 6 the potential is 
q(r) = -4(r) sin(2Tcr/0.3) for 0 < r < 0.3 and q(r) vanishes for r > 0.3. 

The following general conjectures may be made based on this numerical evidence. 
It should be kept in mind that we are considering only radial potentials q(r) and 
only those scattering frequencies CJ~ which are excited by radial initial data. 

(a) If q(r)>O, then Regj#O and Imo,>O. 
(b) If q(r) ~0, then there is a.i such that Re 0, =O. If q(r) changes sign, this 

phenomenon depends on how negative q(r) is. See Figs. 5 and 6. 
(cj Re(oj+ I - oi) is close to x/R, especially for large j, where R is the radius 

of the support of q(r). In most of the above examples, R = 0.3 so that lr/R = 10.46. 
For instance, in the case of Fig. 1 with A = 6, Re(o,-o,j= 10.56 (cf. Table I). 

(dj Im G, decreases monotonically as the amplitude of q(r) increases. See 
Figs. 1 and 3. 

(ej The scattering frequencies depend continuously on the potential. This is 
clear from all of the figures. The only apparent exception is seen in Figs. 3 and .59 
where the uj grow as A + 0. (In fact they tend to infinity, the reason being that if 
A = 0 there is no scattering frequency at all.) 

I , I / 
IO 20 30 40 50 60 70 

RE 

FIG. 1. Constant potential in a sphere. 
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FIG. 2. Smoothed potential. 
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FIG. 3. Spherical shell. 
RE 
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FOG. 4. Thin spherical shell. 
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FIG. 5. Negative potential. 

(f) The smoothness of q(r) does not greatly affect the scattering frequencies 
but its influence does seem to increase with increasing j. See Fig. 2. (In order to 
distinguish the three potentials in Fig. 2, we took the finer mesh At = Ar = 0.001.) 

(g) The scattering frequencies are relatively insensitive to the presence of 
“holes” (as in Fig. 4j. Unless it is extremely thin, the outer “shell” of the support of 
q(r) acts as a kind of barrier to the incident waves. 

!h) If ql(r) =A -q(r) 20, then Im oj--+ 0 as A + m, while Im oj-+ zc as 
d -+ 0. See Figs. 1 and 3. In Fig. 5 where the potential is negative, Im Go -+ 8 for 
j22, but crl + -irx: as A+ --E’. 

4. CQMPARISON WITH THE THEORY 

by 
We begin with a brief summary of the theory of the scattering frequencies excited 

a potential of compact support. The basic reference is [5]. Let q(xj be a 

I I I I I I 
IO 20 30 40 50 60 70 

RE 

FIG. 6. Potentials which change sign. 
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bounded function for x E R3 which vanishes for r = 1x1 > R. The first definition of a 
scattering frequency is a complex number CJ for which there is a solution p(x) (not 
identically zero) of 

-Ap + q(x) p(x) = dp(x) 
(1) 

p(x) - exp( - ior)/r as r= 1x1 --f ~3. 

The condition at infinity is the classical outgoing radiation condition; it can also be 
expressed in a more abstract way. This definition defines u as a kind of eigenualzre. 
Of course it is not a true eigenvalue because p(x) is not square-integrable. In fact, 
most of the spectrum of the operator -A + q is continuous. A scattering frequency 
is also a number r~ such that exp(iot) is a (true) eigenvalue of the Lax-Phillips 
semigroup Z( t ). 

The second definition of a scattering frequency is as a pole. Solve the same 
equation as (1) but with the condition 

p(x) - PO(x) - exp( - ior)/r’ as r --+ ‘xj, 

where pO(x) is a solution of the free equation (with q = 0). If we call the solution 
p(x, rr), then the scattering frequencies are the poles of the meromorphic function 
p(x, a) as a function of (T. An equivalent characterization, in case q(x) 3 0, is as the 
poles of the resolvent operator [c? + A - q] - ’ when extended from the lower to the 
upper half plane. They are also the poles of the outgoing Green’s function and of 
the S-matrix. 

The third definition of the scattering frequencies is that they are the exponents 
which appear in the asymptotic expansion 

72 

24(x, t) - c cjei”“j7j(.x) (3) 
j= I 

as t --) co, where u(x, t) is any nontrivial solution of 

u,, -Au + q(x) u(x, I) = 0 

with initial data of compact support. 

for (x, t) E 5X3 x R (2) 

The scattering frequencies depend only on the potential. The main difficulty, both 
theoretically and computationally, is that they cannot be characterized 
variationally. The following facts have been proved. They are confirmed in part by 
our computational results in Sectional 3. 

(i) There are at most a countable number of scattering frequencies aj and 
Im oj+ +a3 [S]. 

(ii) If q(x) 3 0, all the scattering frequencies are in the upper half plane [S]. 
More generally, the same is true if the operator -A + q has no negative eigen- 
values. If this operator does have a negative eigenvalue -K’, then --in is a scatter- 
ing frequency. It corresponds to an exponentially growing mode; all the scattering 
frequencies in the lower half plane arise in this manner. 
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(iii) If q(x) 3 0, there exists an infinite sequence of irnuginarj, scattering 
frequencies [6]. We do not see them in our computations because we are only 
dealing with radial solutions. 

(iv) If q(r) is C” then the number of scattering frequencies in a large disk 
IIT/ <N grows at most polynomially as N-, x [g]. If q(x) is even smoother, 
namely, if it is in the Gevrey class of order CL, then all the scattering frequencies lie 
above an algebraic curve J = c + c JxIB in the complex plane where ,0 = t,‘(3r -- I) 
[3]. Thus the smoothness of the potential affects the asymptotic location of the 
scattering frequencies, in general agreement with our conjecture (f) in Section 3. 

(v) Each scattering frequency depends continuously on q(s) in the $5” norm 
for any p > 3. except if they tend to infinity [2]. 

(vi) In case the potential q(r) depends only on r, we may look for solutions 
p(r) of Eq. ( 1) which depend only on r. Then there are other solutions of the form 
,~(r) Y( 8, cp), where Y(B, q j is any spherical harmonic. We did not see them in the 
computations because we were dealing only with radial solutions. Thus there is no 
contradiction between conjecture (a) above and Theorem (iii): ah of the imagiarar;; 
scattering frequencies in (iii) correspond to non-radial solutions. Conjert.ures (a) 
and (b j were suggested by the computations and we have subsequently been able to 
prove them [ 111~ 

(vii ) We mention a theorem for the case of a bounded obstacle with Dirichlet 
boundary conditions instead of a potential [4]. If the obstacle consists of two 
disjoint smooth convex pieces a distance D apart, then there exists a sequence of 
scattering frequencies asymptotically close to Ci + .jx,‘D for j = 1, 2, . . . b%al: the 
spacing n/D of the real parts represents is the frequency of a wave traveling along 
the ray joining the two pieces and back again, a distance 20. Our conjecttire ic) 
above has a similar interpretation: the spacing n,!R is the frequency of a spherical 
wave shrinking from the edge Y = R of the support of q(x) PO the origin and 
expanding back to the edge, a radial distance 2R. 

(viii) If Cc is a bounded domain and we consider a potential Aq(s), where 
q(s) > 0 in c’, then the scattering frequencies of the potential converge, as k -+ X, 
to the scattering frequencies of P and to the eigenvalues of the interior holes of cS if 
fl is not simply connected [6]. This is observed in Fig. 3, where the hole is the ball 
of radius 0.2 which has the lowest eigenvalue x,!O.? = 15.7. 

We now derive explicit formulas for the radial scattering frequencies in case 44;‘) 
is a step function. We begin with the simplest case, q(r) = 4 for I’ < R, where A is a 
positive constant, and q(r) = 0 otherwise. Then J = io has negative real part and the 
problem (1 I reduces to 

P,r+W)Pr- Cl*+AlP=O for O<r<R, 

P,(Q) = 0, (14) 

p(r) = rpl exp( -AT) for I’> R. 
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This is essentially Bessel’s equation of order t so that the solution which satisfies 
the boundary condition at r = 0 is r PI sinh(/3r), where p = (A’ + A)“‘. Using the 
boundary condition at r = R, we easily obtain the equation 

tanh(PR) = --a/A 

for the radial scattering frequencies. 

(1% 

Next we take the potential q(r) = A for R, <r< R2 and q(r)=0 otherwise. In 
this case p(r) =r-’ exp(-Ar) for r> R2, p(r)= Br-’ sinh(Ar) for r < R,, and 
p(r) = r-‘[C sinh(pr) + D cosh(arj] for R, <r < R,. This leads to the exact 
equation 

,?{/‘?+A tanh[D(Rz- R,)])/{i+p tanh[P(R2-R,)]) = -p tanh[AR,] (16) 

for the radial scattering frequencies. 

5. TIME-DEPENDENT POTENTIALS 

In this section we present the extension of the theory and the computations to a 
potential which depends periodically on time. The basic reference is [ 11. Let q(x, t) 
be a bounded function which vanishes for 1x( > R and is periodic in time: 
q(x, t + T) = q(x, t) for all x, t. Once again there are three basic definitions of a 
scattering frequency. First, it is a complex number CT for which there is a periodic 
function p(x, t) of period T such that exp(iat)p(x, t) is an outgoing solution of the 
time-dependent equation 

u,, -Au + q(x, t) 24(x, t) = 0. (17) 

“Outgoing” means that the solution u at any point (x*, t* j can be expressed as an 
integral of qu over the past cone {(x, t): jx - x*1 = t* - t). Equivalently, if the 
perturbation q is suddenly removed, the solution in the future vanishes in an 
expanding sphere. 

The second definition is as a pole. Solve the inhomogeneous equation (17) with 
any initial conditions but with the extra forcing term exp(iat)f(x, t), wheref(?c, t) 
is any nontrivial function of period T. Then the solution will be meromorphic in c 
with its poles at the scattering frequencies. There are also the poles of the S-matrix 
or scattering amplitude. 

The third definition is as the exponents ci in the asymptotic expansion 

(18) 

as t + +co, where U(X, t) is any nontrivial solution of (17) and the pj(x, t) have 
period T and the other properties stated above. 
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The scattering frequencies depend only on the potentiai q(?c, t). Since any integer 
multiple of V. where v = 2x/T is the frequency of the potential, can be freely added 
to a scattering frequency CJ to get another one, we normalize the definition to 
require 0 d Re G < 1’. The following facts have been proved. 

(r.) There are at most a countable number of scattering frequencies 6i and 
Imoj+ +CG [27. 

(p) Each scattering frequency depends continuously on 4 in the uniform (L 1 ) 
norm [Zj. 

In this paper we only consider radial potentials q(r, t) and radial sohrtions u(r, r) 
for the reasons mentioned in Section 1. Then Eq. (17) can be written in the form (5) 
except that 4 = q( r, t). The finite difference scheme and Prony’s algorithm are the 
same as in Section 2. We take the sample rate AT to be a multiple of the period I-, 
so that p(x. r. + k AT) = p(x, to). 

For our first computational example we chose 

q(r, t) = 6 + 68 sin(200rrt) for OdrCO.3 (19, 

and q(r, t) = 0 otherwise, where B= 0, 0.01, 0.05, 0.1, and 0.5. This is the potential 
of Fig. 1 but with a rapidly oscillating amplitude. The scattering frequencies turned 
out to be very insensitive to B (within 1% ). 

A more interesting potential is one whose support is oscillating. We took 

q(r, I)= 6 for O<v<0.3(1+Dsin(lOOnt)) (20) 

and q(r, r) = 0 otherwise. The case D = 0 corresponds to no oscillation at all. The 
scattering frequencies are presented in Fig. 7 for D = 0.1, 0.3, and 0.5. We took our 
usual sample rate AT= 0.02, which was the same as the period T= 0.02 of the 
potential, so that Prony’s method could not “see” the scattering frequencies G -C V, 
0 + 2~, . . . . (The finite difference scheme, on the other hand, did “see” the periodicity 
since the mesh size was much smaller.) 

FIG. 7. Rapidly oscillating sphere. 
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FIG. 8. Oscillating amplitude. 

Next we took a potential with a smaller period, namely, 

q( r, t) = 6 + 0.6 sin( vt ) for O<rtl (21) 

and q(r, t) = 0 otherwise. The results are presented in Fig. 8 for v = lOrr, using the 
sample rate AT= 0.1. Thus Prony’s method samples two data points per period 
(T = 27c/v = 0.2) and we are able to see scattering frequencies of the form g= CI + i/I, 
- CI + i/3, -v + CI + i/3, and v - CI + i/I, two of which lie in the first quadrant and two 
in the second quadrant. In order to clearly illustrate this repetition of scattering 
frequencies, we graph the tirst four such quadruples in the upper half plane in 
Fig. 8. Note the pairs which are horizontally spaced apart exactly at the distance 
v = 27qo.2 = 1077 = 3 1.4... . 

We would like to study potentials which oscillate much more slowly, but such a 
calculation would require far slower sampling and therefore a much longer time to 
accurately solve the wave equation. 
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